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Rational R-matrices in irreducible representations 
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Abstract. Working directly from the Yang-Baxter equation, we obtain the spectral 
decomposition of rational R-matrices in irreducible representations, together with a 
necessary condition for their erisfence. Examples are given, and connections with Drinfeld's 
Yangian construction are discussed. 

1. Introduction 

This paper is concerned with the existence and form of rational solutions of the 
Yang-Baxter equation 

R d u ) R n ( u +  ~)R23(0) = R z ~ ( ~ ) R o ( u + ~ ) R ~ ~ ( u )  ( U , U € C )  (1.1) 

which takes values in End( V,O V 2 0  V3) .  The subscripts denote the spaces on which 
R acts: 

R is normally taken to act in representations pYOpb of a Lie algebra d, so that V., V, 
are the appropriate representation spaces of d. 

There are basically three types of solutions (R-matrices), classified according to 
their dependence on the spectral parameter U. The elliptic R-matrices are elliptic 
functions of U, and depend in addition on two further parameters. In an appropriate 
limit of one of these parameters, we obtain the trigonometric solutions, which are 
exponential functions of U, and also depend on the remaining additional parameter 
q. The trigonometric solutions are related to  the non-commutative, non-commutative 
Hopf algebras that have come to be known as quantum groups [l], and which are 
q-dependent deformations of Lie algebras. The third class of R-matrices, with which 
we are concerned, have rational dependence on U. They can be obtained by taking the 
q + 1 limit of the trigonometric solutions, but here we study them in their own right. 
For a review of solutions of the Yang-Baxter equation see Jimbo [Z]. 

There have been previous investigations of rational R-matrices. Many were concer- 
ned with the construction of R-matrices for specific algebras and representations. The 
seminal paper for a more general approach was that of Kulish er a1 [3]. In their paper, 
the iom of soiutions for the A. series was derived; they aiso introduced a generai 
technique, which has become known as the fusion procedure, for the construction of 
new R-matrices from existing ones. 

t Supported by a UK Science and Engineering Research Council studentship 
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The most general approach to the subject is that of Drinfield [4]. He has related 
the rational R-matrices to a non-commutative, non-cocommutative Hopf algebra he 
named the Yangian, and was able to use the representation theory of the Yangian to 
work out, for general Se, some representations for which R-matrices must exist. He 
also rederived the form for the A, solutions deduced by Kulish er al. 

This paper is arranged as follows. In section 2, we work directly from the Yang- 
Baxter equation to derive, for general Se, a set of equations (2.11) which all unitary 
Emairices must satisfy. When a soiuiion of ihis sei of equaiions exists, it gives us the 
spectral decomposition of the R-matrix, which we believe has not been obtained in 
this form previously [5], although similar results have been found by Ogievetsky and 
Wiegmann [6]. When a solution does not exist, there can he no R-matrix, and so a 
necessary condition for the existence of an R-matrix is that there should be a solution. 

Our method is similar to that of Kulish et a / ,  and our results reduce to theirs for 
LllC fin bCllC'b, anu I I l a l G I l  "LllCl n - l l l d l L l C C b  p,cvruu>ry lUUllU ,U, l I lu lVlUUal  algeDra* 
and representations. As an illustrative example we calculate new R-matrices, which 
Drinfeld showed must exist, in symmetric, traceless representations of SO( N ) .  Unfortu- 
nately, we are unable to show that our condition is also sufficient, in the sense that 
the existence of a solution of our equations is not a guarantee of the existence of a 
solution of (1.1). Neither are we able to give a general method for finding those 

Yangian construction. 
In section 3, we describe the Yangian, and how Drinfeld was able to discover a 

general characterization of some, but not necessarily all, of the representations for 
which R must exist. A case by case analysis of our equations shows that they are 
soluble for those representations specified by Drinfeld, thus guaranteeing the existence 
ofthe R-matrices whose spectra! decompositior? was rompcted in section 2. Converse!y, 
we have never found a solution to exist for any other representation, and we therefore 
believe that Drinfeld's set of representations is exhaustive. 

Interestingly, it turns out that our equations can also be derived from the Yangian, 
although this does not appear to have been done before [ 5 ] .  We believe that, if a 
general method for solving them could be found, it would give the complete 

In conclusion, we mention briefly the fusion procedure [3], which also gives an 
indication of the irreducible representations for which it is possible to find rational 
R-matrices, and the more general question of solutions in reducible representations. 

IL^ A ^^_:^^ .__I --A-L -.Le- " _^._ :-.. 1.. r _I P^_ :->:..:>~~., .I..L... 

m - m o n n t . + : n n n  FA- ..,h:ch :+ hnlrlr Clrr th:r - ~ o ~ n n  nn nn t n  n;..fnlrl's 
.Cy..,".,..LYL."..l L"L *, . .IL.LL 11 L L " L U . 2 .  I "L .L..I .CUa"II, ,,U 5" v.. L" " I I u Y a I  Y . . . L . I I U  I 

c!assification and spectra! decomposition of unitary* rational R-matrices, 

9 n,.*:,."-, D-.""&-:"..- :" :--̂ .4..̂ :Lln a. I\PI.Y..'... I.-.,,PL..CCI I,. ... C"YC.".L ..P. C"S...'..."..' 

We seek rational solutions of the Yang-Baxter equation, (1.1). that are both unitary, 
R ( u ) R ( - u ) = l ,  and have R ( u ) + l  as U". We can then write 

and r( U )  must now satisfy the classical Yang-Baxter equation, 

[ r d u ) .  *,,(U+ u ) I + [ r 1 d ~ ) .  4 u ) 1 + [ r t 3 ( ~ +  U), rAu) I  = O  (2.2) 

obtained by substituting (2.1) into (1.1) and examining the leading term, of order 1/u2. 



Rational R-matrices in irreducible representations 

We examine R-matrices which have as their classical limit 
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1 
r( U )  = - I,, 0 I,, 

U 

where I, are the generators of Sp. (Summation over repeated indices is always implied.) 
This is the simplest rational solution of (2.2). For a review of solutions of the classical 
Yang-Baxter equation, see Belavin and Drinfeld [7]. 

First, we write 

Next, we use the unitarity condition to find X. Upon examining R ( u ) R ( - u ) = l  as 
U + a, we find that 

(2.3) x = t1J” 0 1,I.. 

Our strategy is now to examine the u + a  limit of (1.1). Doing this, we obtain 

U 

1 x,.)( 1 +- 1 0  I,@ I” +> x,, 
V 

= ( I  + t 10 I“ 0 I” +i x,, 
U l )  

It should be noted that here we are implicitly assuming the existence of R,, and 
R,, for some V,, This is trivial if V, = V, = V, = a (say), but if V, = V, = a and V, = b 
then we are assuming that if Rab exists, so does Raa.  

For R to be a solution of ( l . l ) ,  it must satisfy (2.4) at each order of l l u ,  so we 
now expand out the brackets and equate coefficients of 1, l / u  and l / v 2 .  The results 
of this can most easily be een by multiplying through by u ( u +  U). The left-hand side 
of (2.4) then becomes 

U( u + u )  + u( 1 0  I,, + I,@ 1) 0 I,, + u 1 0  I,,@ I ,  

U + U  U + I, 0 I” 0 IP1” + - x,, + ~ x,3) 
U u + u  

We now see that the terms of order u2 are trivially equal, while those of order U givet 

[R(u), 1 0  I, + I ,0  11 = 0 (2.5) 

which expresses the invariance of R under the diagonal action of Sp. Hence, by Schur’s 
lemma, we can express Rab(u) in the form 

(2.6) 

t I am grateful to A J Macfarlane for pointing this out to me in the SU(2) care. 
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where P, is the projector onto the irreducible component c of the tensor product aOb, 
and T< are some rational functions of U, as yet undetermined. At this stage, we should 
point out that we are only able to apply our analysis to decompositions without 
multiplicities since, otherwise, R acts on the isomorphic components c', . . . , C' as a 
matrix M n p ( u )  (where a, p = 1,. . . , r ) ,  and M will not, in general, be diagonalizable. 

The terms of order 1 are given by 

D ~ . . \ i . . ~ ~ r ~ r l r h r ~ r r ~ ~  I Y  \ 
..l>,..,,..lw.,wz+~r ' ~ V . " w . , . " - A ~ ) - * 2 ] ,  

= ( u l 0  I,@ I,. + I,,@ IJ,, + XI,+ X2])R,J U). 

x,, + x,, = f{( i  0 I ,  + r,o i ) ( i  0 I ,  + I , @  1) - r++or, - I.@ I J O  zPry 

(2.7) 

We can simplify this by noticing that 

so that, because of (2 .5) ,  we can rewrite (2.7) as 

R 1 2 ( ~ ) ( ~ 1  @Is& + t I , @ I , @ [ I , ,  I " ] )  

= (U 10 I ,  0 I,, + fZ, 0 I ,  0 [I , ,  IJ)R12( U ). 

Using 

[C,,  10 ZJ = [ (1 0 I" + I" 0 1 )2 ,  1 0 I , ]  = ZC,,,,I" 0 I, 

(where C2 is the quadratic Casimir operator, here evaluated on the tensor product) 
we obtain 

R ( U)( u 1 0  I, -a[ C,, 1 0 I * ] )  = (U 10 IA +a[ C2, 10 IJR( U ). (2.8) 

This equation is now valued on VI@ V, only, and is the final form of the term of order 
1 .  We shall now use (2.8) to find R+ 

In order to obtain a relation between the T < ( u ) ,  we substitute the form (2.6) for 
Rub(u) back into (2.8). Acting on the left with Pd and on the right with P,, we obtain 

Td(u)pd(u +%c2(c)-  C2(d)))(l@IA)Pc 

= T c ( U )  pd (U -a( c2( c) - C2(d ))I)( 1 0 IA) P,. (2.9) 

But i 0 iA is an irreducibie iensor operator in ihe adjoini represeniation, and so we 
can apply the Wigner-Eckhart theorem to obtain the genera'l form for group-invariant 
rational R-matrices acting in irreducible representations a, b of the algebra (where 
a O b  has no multiplicities) 

1 T c ( U ) p c  (2.10) 
c c & b  

where 

(2.11) 
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for c, d such that d c  adjointmc and ( d i l l 0  I,llc) (the reduced matrix element) not 
equal to zero. 

To deal with (2.11) we first need to know for which c, d (such that d c adjointOc) 
the reduced matrix element (dlllOI,IIc) vanishes. When we are examining R,,(u) 
(that is to say, R acting in two identical representations a = b) we can split the 
components of a @ a  into those appearing symmetrically and those appearing antisym- 
metrically in  the tensor product. Now (dl110 IA + I,Qlllc) vanishes, and so 

The operator thus has negative parity, and so, for the reduced matrix element to be 
non-zero, c and d must have opposite parity. We now proceed on the assumption that, 
conversely, when e and d have opposite panty, the matrix element is non-zero. This 
is certainiy true when a B a  oniy contains two states oi weight q, since the higinest 
weight w,  of c is chosen to be orthogonal to the state of the same weight in d :  

(w,ll@ I ,  + I,@ 1lWd) = 0. 

Our system of equations (2.11) then applies to all c, d of opposite parity such that 
U L a","lrlrv c. 

For an R-matrix to exist, it is necessary that this system of equations have a solution. 
In general, however, the system will be overdetermined. We now proceed to investigate 
the existence and uniqueness of solutions of this system. 

Existence. We check this by forming the representations c c  a O a  into a network. 
Starting with the representation of highest weight fk=Zw., where w. is the highest 
...nin~t ,.r ..,.A a ..J.~..~.~~. a rmn~i,.:,.t "..A a I.-.,- nnr,.L:+n ..--:+.. 
and label each such arrow with the number C,(c)-C,(d). T h e  set (2.11) is consistent, 
and thus R is well defined, if and only if, for every pair of representations p ,  q c a Q a ,  
the set of numbers attached to the arrows on each possible route from p to q is the 
same. This is the same as saying that all closed paths on the network must give TJ T~ = 1 
for consistency. 

Lkiqu~ness. The ze!work described is .!ways mnnerted, S ~ ~ C P  !he highest weights 
of the components of a Q a  differ by positive roots, and are linked by l@I,,-Ip@l. 
Thus (if R exists) any one rd is sufficient to determine all of  the others. Hence R is 
defined up to an overall factor, dependent on U. We will choose this factor so that the 
coefficient of the representation with highest weight is one. Note also that, as a 
result of (2,11), lim.,,R(u)=l. In addition, we are free to rescale U :  we see that 
R(Ku) is also a solution of (1.1) for any constant K. 

We have not been able to formulate a general method for determining whether or 
not a given network is consistent. However, we have been able to calculate a large 
number of specific examples. Consistent networks which reproduce known R-matrices 
include those for vector representations of S O ( N )  [81 and Sp(2n) [9], for spinor 
representations of S O ( N )  [lo], for various other representations of S O ( N )  and Sp(2n) 
[11-13]. and for the defining representations of all of the exceptional groups [ 6 ]  except 
E,. Also consistent are the networks for those representations of A. for which unitary 
R-matrices have been calculated [3] (the completely symmetric and antisymmetric 
representations). 

At this stage we mention the essential difference between our results and those of 
Kulish et a/ for the A. series. The point is that their equation is obtained without 

1 - ~ , . - I  ~ & _ .  

"L.15.1, "1 Y, w- ",,U, c -  U W l . C . . C l * .  " - C V ' L U , " , . ' L  OL." c, U .."I* " p ' y " " ' L c  'y".,LJ, 
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requiring R to be unitary. This is done by setting V, to be the vector representation 
(U in the usual Young tableaux notation); Ram is known for any representation a of 
A., and is linear in l / u ,  so that X vanishes. Their equation for R is exact for all U ;  
ours is only true in the limit u+m. However, because X vanishes, they also have to 
take into account terms symmetric in p++ v in (2.7), which involve the symmetric third 
order Casimir operator of A., d,,,. This adds terms 

(2.12) 

to both numerator and denominator of (2.11), and any representations for which these 
do not always vanish cannot have unitary R-matrices, since unitarity requires 
T ~ ( U ) T ~ ( - I I )  = 1. The effect is that for those representations of A, for which unitary 
R-matrices exist, our equation is the same as theirs, and can be used to obtain those 
unitary solutions given in their paper. When (2.12) is non-zero for some c, d, and a 
unitary solution does not exist, our method has nothing to say about the solution. 

As a brief example we give here the network corresponding to R., for a the defining 
(seven dimensional) representation of G,, which is one of the R for exceptional groups 
previously found using the (analytic) Bethe ansatz [6]. Labelling representations in 
terms of a basis of fundamental weights so that a = (1,O) the network is then 

(2,o)S +' (0, 1)A +' ( 0 , O ) S  
./4 

(1,O)A. 

This also illustrates the obvious fact that any network which is a tree is consistent. 
We have also found some new R-matrices using this method, including those for 

some representations of A. whose Young tableaux are rectangular (although we have 
not shown that the networks of all such representations are consistent) and for 
completely symmetric representations of S O ( N ) ,  which we give shortly as an example. 
We have tested many other networks (with the help of the LiE computer algebra 
package [ 141) and found them mostly to be inconsistent. All of our results for individual 
cases agree with the general characterization found by Drinfeld, which will be explained 
in section 3. 

Now consider the cases where a # b. We have no general method for determining 
when ( d ~ ~ l Q I , l ~ c ) # O .  However, an intriguing fact to emerge from the study of the 
a = b networks is that, in all of the consistent examples, whenever c c adjointQd, c 
and d have opposite parity: in other words, it seems that for consistent networks the 
parity principle is redundant. We would like to emphasize that this is not true of 
inconsistent networks, and that it remains only a conjecture for consistent networks. 
If we go ahead and analyse the consistency of a # b networks on the assumption that, 
if the network is going to be consistent, (dlllQI,IIc)#O whenever ccadjo in tOd,  we 
obtain matrices Ra,,, all of which agree both with Drinfeld's classification and, where 
these exist, with R-matrices found in the papers listed above. 

As an illustrative example of new R-matrices, we now calculate the R-matrices in 
symmetric, traceless representations of SO( N ) .  These could be used to solve the 
generalization of the XXX magnet in which the (isotropically coupled) spins take 
arbitrary directions in N dimensions, as advocated by Reshetikhin [12]. 

Let m, m 'be  the representations with highest weight (m, 0,. . . ,0 )  and (m', 0 , .  . . , 0 )  
(with respect to a basis of fundamental weights), where m 3 m'. For these representa- 
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tions, the network described is shown below: 
m+"-l m 
A - m+m' - m ........ - p ...... --+ p .... m -+ ....... -+ E .... Ep .... - 

m' 

I 1 1 

m+"-2 - m o -+ Ep -+ ..... .... ..... 

m .... -+ ....... 

m-m' - m....o 

(where representations are denoted by the usual Young tableaux, with a trace removed 
from all symmetric indices). The differences of the Casimirs have not been shown on 
this diagram. They can be calculated easily using the inverse Cartan matrix, and are 
found to satisfy the given requirement, i.e. that the rectangles in the network commute. 
Substituting their values into (2.11) we find that the R-matrix obtained from (2.10), 
(2.11) is 

where we have introduced the notation 

This agrees with the R-matrices for {m. m ' )  = (1,2}, {1,3) and {2,2} calculated [13] 
using the fusion procedure [3]. 

Many of the R-matrices which have already been found are in the form of factorized 
S-matrices for the interaction of massive particles in integrable models in 1 + 1  
dimensions. In addition to satisfying (1.1) and unitariy, the S-matrices must also satisfy 
crossing symmetry. This requires that 

S a , ( @ )  = (Sa',( ir - 0))' 

where 0 is the rapidity, and T means transpose and conjugate in the first space, so 
that if i ,  j and k, I label states in the incoming and outgoing representations respectively, 
and (U$)* = U', then (Sx,')' = Sij .  Now S ( 0 )  acts as the identity S f S j ,  and so the crossed 
version of S(0) is S:S;ocP, (the singlet representation). Hence we need S(irr)arP, .  
But where Po is present in  the decomposition we note that the tensor product of the 
singlet and adjoint representations is just the adjoint representation, and so in our 
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definition (2.10), (2.11) we must use our freedom to rescale U to put 

where Cndj = C,(adjoint). 

3. The Yangian construction 

For full details of the Yangian, we refer the reader to Drinfeld [4]. However, the salient 
points are these. The Yangian Y ( d )  of a Lie algebra d is obtained by setting h = 1 
in the algebra which is the unique quantization of the co-Poisson Hopf whose classical 
r-matrix is 

1 
r(u) =- I,,@ I,. 

U 

It is a Z,-graded algebra with generators In (grade zero) and J ,  (grade one). The 
generators I ,  satisfy the usual commutation relations of the Lie algebra d, 

[ I & ,  4‘1 = C,,J” (3.1) 

whilst the JA satisfy 

[I*, J,I = C A ~ J ~  (3.2) 

and 

~ J ~ , ~ J , , ~ ~ l l - ~ ~ ~ , ~ J , , J ~ l l = ~ ~ , v a p ~ ~ ~ o , ~ p .  I?} (3.3) 

where 

( X I ,  x2. x3}= 1 xtx,xk 
-I 

aA,.u@y - 2 4 C A ~ ~ C ~ 8 ~ C u r k C ~ k  
c + j + k  

For d = s 1 ( 2 ) ,  (3.3) is replaced by a different relation: 

[ [ I* ,  J+I,[I,, J ~ I I + [ [ J , , J ~ I ,  [L, J,II=(~,,,,,C,,+~,~,~~C*,.)II,, 1 8 , 4 } .  

The co-multiplication is given by 

A(1,) = IA 0 1 + 10 IA A(J,) =.TA 0 1 + 101, +$cA,,I,O I,. (3.4) 

Equation (3.3) is determined by requiring that the coproduct defined in (3.4) is a 
homomorphism consistent with (3.11, (3.2). 

It is then possible to define an  automorphism Tu : Y ( d )  + Y ( d )  for any U E C by 

Tu ( JA ) = JA + u1, and Tu ( I n )  = IA. 

Further, defining  tu^": Y ( d ) 0  Y ( d ) +  Y ( d ) O  Y ( d )  by 

Tu.. = Tu 0 T. 

there then exists a formal R-matrix, R(u), satisfying T,,R(u) = R(u+  w -  U). which 
expresses the non-cocommutativity of the Yangian through 

T ~ , ~ A ‘ ( X )  = R(U)-’(T,,~A(X))R(U) ( x c  Y ( d ) ) .  (3.5) 
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In this equation, which is valued in Y ( d ) O  Y ( d ) ,  A is the product of A and the 
transposition operator P. This R satisfies the Yang-Baxter equation, ( l . l ) ,  and 

R ( u ) R ( - u ) = l .  

The existence of the automorphism Tu is essential; it is this that allows the existence 
of R ( u ) .  It is clear that a representation of the Yangian gives rise to a representation 
of R ( u )  and hence to a matrix solution of the Yang-Baxter equation. So the search 
for representations of Y ( d )  is fundamental t o  the search for solutions of (1.1). 

Drinfeld sought [4] to construct representations b of the Yangian as follows. Starting 
from a representation p of d, 

bud = p ( U  (3.6) 
he then needed to define ; (JJ  in a way consistent with the defining relations of Y ( d ) .  
One way of doing this is to set 

G(J,)=O. (3.7) 
However, he showed that it is not possible to do this for all irreducible representations. 
This is because, although b is clearly consistent with (3.1), (3.2), it is not, in general, 
consistent with (3.3). Consistency is only possible for representations in which the 
right-hand side of (3.3) vanishes. This is the case for the following representations 
(theorem 7 of Drinfeld [4]), although not necessarily only for these representations [ 5 ] .  

Let n, be the coefficient of the simple root a in the expansion of the highest root 
a,,,, and let k, = (amax,  amSx)/(a, a). Let the corresponding fundamental weight be 
w.. The representation of the group with highest weight R may then be extended to 
a representation of the Yangian for (i) R = w, when n, = k, and (ii) R = tu, when 
n, = 1 ( t  a positive integer). 

We now note that the results of section 2 can also be derived from the Yangian. 
We assume 6 in the form (3.6), (3.7). but, instead of investigating the consistency of 

with the defining relations of Y ( d ) ,  we consider the implications of b for (3.5). 
Substituting x =  J ,  and x =  I* respectively in (3.5), wesee that R a b ( u ) = p . O p b ( R ( u ) )  
must satisfy 

&b(U)(UI@Pb(IA) -kA&a(lu)@pb(z@)) 
= (u lOpb( l , )+ fc * , ,p . ( l , )OPb( r , l )R .6 (U)  (3.8) 

(3.9) 

and 

[Rat.(U), 1 @pb(IA ) + Po( 1,) 11 = 0 

where 1 is the appropriate representation of the identity. Equation (3.9) is just (2.5), 
whilst equation (3.8) is essentially theorem 4 of Drinfeld’s paper, and coincides with 
(2.8). The general A. case is dealt with in theorem 9 of his paper, and reproduces the 
results of Kulish et al. 

The rext of the analysis of section 2 now follows through. 

4. Conclusions 

We have presented a general formula for the spectral decomposition of unitary R- 
matrices in irreducible representations, where they exist, together with a necessary 
condition that the representations must satisfy for this to be so. Unfortunately we have 
not been able to develop a general method for solving this condition, and so have 
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usually had to proceed case by case. In an alternative approach, without actually 
deducing the form of R, Drinfeld presented a set of representations for which he 
proved that R must exist. We believe that the two conditions coincide, so that we can 
now compute all such R matrices, but we are unable to give a general proof. 

This lack of generality also means that other facts to emerge from the study of 
examples must remain conjectures: for instance, that in consistent networks c c 
adjointOd + c, d have opposite parity, and that (following Drinfeld’s comments [4]) 
the network for a the adjoint representation is always inconsistent. 

One way to construct R-matrices is the fusion procedure [3] (or see Jimbo’s review 
[2] or the author’s paper [13]), which is a method for constructing new R-matrices 
from existing ones. In all cases we have examined, analysis of how the fusion procedure 
can be applied to existing R-matrices shows that it produces R-matrices for precisely 
those irreducible representations specified in sections 2 and 3. 

In addition, the fusion procedure can be used to produce R-matrices in reducible 
representations [13], the decomposition of some of which is known [6 ,  111 .  It would 
be interesting to try to extend the methods of section 2 to reducible representations, 
or alternatively to discover whether the representations in which R-matrices can be 
found using the fusion procedure correspond to all possible representations of d, 
reducible and irreducible, which can be extended to representations of Y ( d ) .  However, 
the connections between the fusion procedure, the networks of section 2 and the 
representation theory of the Yangian currently remain to be explored. 
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